Self-Assembly of Block Copolymer Chains To Promote the Dispersion of Nanoparticles in Polymer Nanocomposites

نویسندگان

  • Jun Liu
  • Zixuan Wang
  • Zhiyu Zhang
  • Jianxiang Shen
  • Yulong Chen
  • Zijian Zheng
  • Liqun Zhang
  • Alexey V Lyulin
چکیده

In this paper we adopt molecular dynamics simulations to study the amphiphilic AB block copolymer (BCP) mediated nanoparticle (NP) dispersion in polymer nanocomposites (PNCs), with the A-block being compatible with the NPs and the B-block being miscible with the polymer matrix. The effects of the number and components of BCP, as well as the interaction strength between A-block and NPs on the spatial organization of NPs, are explored. We find that the increase of the fraction of the A-block brings different dispersion effect to NPs than that of B-block. We also find that the best dispersion state of the NPs occurs in the case of a moderate interaction strength between the A-block and the NPs. Meanwhile, the stress-strain behavior is probed. Our simulation results verify that adopting BCP is an effective way to adjust the dispersion of NPs in the polymer matrix, further to manipulate the mechanical properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Colloidal polymers with controlled sequence and branching constructed from magnetic field assembled nanoparticles.

The assembly of nanoparticles into polymer-like architectures is challenging and usually requires highly defined colloidal building blocks. Here, we show that the broad size-distribution of a simple dispersion of magnetic nanocolloids can be exploited to obtain various polymer-like architectures. The particles are assembled under an external magnetic field and permanently linked by thermal sint...

متن کامل

Mean-field models of structure and dispersion of polymer-nanoparticle mixtures

We review some recent research developments in coarse-grained modeling based on mean-field approaches of the equilibrium dispersion and structure of polymer nanoparticle composites. We focus on three issues: (i) dispersion and phase behavior of particles in homopolymer matrices; (ii) dispersion in mixtures of homopolymers with grafted nanoparticles; (iii) self-assembly and organization of nanop...

متن کامل

Block Copolymer-Mediated Formation of Superparamagnetic Nanocomposites

Well-defined diblock copolymers of bicyclo[2.2.1]hept-5-ene-2-carboxylic acid oxiranylmethyl ester, having both anchoring and steric stabilizing blocks in a 1:1 ratio, have been prepared by ringopening metathesis polymerization (ROMP). The epoxy-containing block copolymer stabilized in situ generated iron oxide (γ-Fe2O3) nanoparticles. The epoxy ester group provided strong chelation between the...

متن کامل

Mechanical Properties of Nanocomposites from Ball Milling Grafted Nano-Silica/Polypropylene Block Copolymer

Polymer based nanocomposites, in which inorganic nanoparticles are dispersed in organic polymer matrices, have attracted materials scientists’ attention owing to their unique properties, resulting from their nano-scale microstructure. Because of their large surface area, nanoparticles interact with the polymer matrix and carry a load effectively. The mechanical properties of these composites ca...

متن کامل

Density functional theory for a primitive model of nanoparticle-block copolymer mixtures.

Amphiphilic block copolymers provide useful templates for fabrication of nanostructured materials that are appealing for a wide variety of applications. The preparation of polymer-particle hybrid materials requires a good understanding of the chemical nature and topology of the amphiphilic molecules as well as their interactions with the embedded nanoparticles. This article reports a density fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 121  شماره 

صفحات  -

تاریخ انتشار 2017